En geometría plana, un rectángulo es un paralelogramo cuyos cuatro lados forman ángulos rectos entre sí. Los lados opuestos tienen la misma longitud. El perímetro de un rectángulo es igual a la suma de todos sus lados.

Rectángulo ABCD.

El área de un rectángulo es igual al producto de dos de sus lados contiguos.

Propiedades

editar
  • Sus lados paralelos son iguales, dos a dos.
  • Sus dos diagonales son iguales, y se cortan en partes iguales (esta característica también lo define)
  • Se puede pavimentar el plano, repitiendo infinitos rectángulos.

El cuerpo de revolución generado por un rectángulo, respecto de un eje que contenga a un lado, es un cilindro.

Rectángulos con nombre propio

editar
 
Rectángulo áureo.
  • El cuadrado se puede considerar un caso particular del rectángulo, en el que todos sus lados tienen la misma longitud.
  • El rectángulo áureo, también denominado rectángulo de oro o rectángulo Φ, es el rectángulo cuyos lados están en razón áurea. Si b y h son los lados, b/h = Φ. Para construirlo a partir de un cuadrado de lado AB, basta con determinar el punto medio M de uno de los lados AB, y trazar, con centro en el punto M, una circunferencia que pase por uno de los vértices C del lado opuesto.
Véase también: Número áureo
 
Representación gráfica de un ortoedro que generaliza la construcción de un rectángulo, en el espacio euclídeo tridimensional.
  • Rectángulo   (rectángulo raíz de 2), aquel cuya relación entre base y altura es igual a la raíz cuadrada de dos. Si b y h son los lados, b/h =  . El interés de este rectángulo radica en que si es dividido en dos mitades, por su lado más largo, los dos nuevos rectángulos obtenidos mantienen exactamente la misma proporción que el original, o sea que son también rectángulos raíz de 2. Es por ello que, entre otros usos, es el formato utilizado para dimensionar las hojas de papel según las normas DIN 476 e ISO 216. Construcción partiendo del cuadrado: de forma similar al rectángulo áureo, se traza con centro en el punto A, una circunferencia que pase por el vértice opuesto C.
  • Doble cuadrado

Magnitudes geométricas para un rectángulo

editar

Dada una figura bidimensional pueden definirse los n-momentos de área centrados como:

 

El 0-momento coincide con el área, los dos 1-momentos se llaman primeros momentos de área (o momentos estáticos)   son nulos para cualquier figura plana. Los 2-momentos se llaman segundos momentos de área (o momentos de inercia planos) y para un rectángulo son:

 

Donde b es la base del rectángulo y h su altura.