La serie de Fourier nos permite representar cualquier función periódica mediante una suma de senos y cosenos.
Función periódica:
f
(
t
+
T
)
=
f
(
t
)
f
(
t
+
k
T
)
=
f
(
t
)
,
∀
k
∈
Z
{\displaystyle {\begin{aligned}&f(t+T)=f(t)\\&f(t+kT)=f(t),\forall k\in \mathbb {Z} \\\end{aligned}}}
Representación trigonométrica
editar
f
(
t
)
=
a
0
2
+
∑
n
=
1
∞
a
n
⋅
cos
(
2
π
n
T
t
)
+
∑
n
=
1
∞
b
n
⋅
sin
(
2
π
n
T
t
)
ω
=
2
π
T
a
n
=
2
T
∫
−
T
/
2
T
/
2
f
(
t
)
cos
(
2
π
n
T
t
)
∂
t
b
n
=
2
T
∫
−
T
/
2
T
/
2
f
(
t
)
sin
(
2
π
n
T
t
)
∂
t
a
0
=
2
T
∫
−
T
/
2
T
/
2
f
(
t
)
∂
t
{\displaystyle {\begin{aligned}&f(t)={\frac {a_{0}}{2}}+\sum \limits _{n=1}^{\infty }{a_{n}\cdot \cos \left({\frac {2\pi n}{T}}t\right)+}\sum \limits _{n=1}^{\infty }{b_{n}\cdot \sin \left({\frac {2\pi n}{T}}t\right)}{\text{ }}\\&\omega ={\frac {2\pi }{T}}\\&a_{n}={\frac {2}{T}}\int \limits _{{-T}/{2}\;}^{{T}/{2}\;}{f(t)\cos \left({\frac {2\pi n}{T}}t\right)}\partial t\\&b_{n}={\frac {2}{T}}\int \limits _{{-T}/{2}\;}^{{T}/{2}\;}{f(t)\sin \left({\frac {2\pi n}{T}}t\right)}\partial t\\&a_{0}={\frac {2}{T}}\int \limits _{{-T}/{2}\;}^{{T}/{2}\;}{f(t)\partial t}\\\end{aligned}}}
También tiene una REPRESENTACION EXPONENCIAL como se verá mas adelante
Teorema de Dirichlet
f
(
t
+
T
)
=
f
(
t
)
=
{
continua trozos
I
=
[
−
T
╱
2
,
T
╱
2
]
∀
t
0
∈
I
,
lim
t
→
t
0
f
(
t
)
finito
{\displaystyle f(t+T)=f(t)=\left\{{\begin{aligned}&{\text{continua trozos }}I=\left[-{}^{T}\!\!\diagup \!\!{}_{2}\;,{}^{T}\!\!\diagup \!\!{}_{2}\;\right]\\&\forall t_{0}\in I,{\text{ }}{\underset {t\to t_{0}}{\mathop {\lim } }}\,{\text{ }}f(t){\text{ finito}}\\\end{aligned}}\right.}
Por lo que la serie de Fourier correspondiente a f es convergente y su suma vale:
f
(
t
)
,
en punto continuo
f
(
t
+
)
+
f
(
t
−
)
2
,
en punto discontinuo
{\displaystyle {\begin{aligned}&f(t),{\text{ en punto continuo}}\\&{\frac {f(t^{+})+f(t^{-})}{2}},{\text{ en punto discontinuo}}\\\end{aligned}}}
Observaciones:
f
(
t
)
par
f
(
t
)
=
f
(
−
t
)
∫
−
b
b
f
(
t
)
∂
t
=
2
∫
0
b
f
(
t
)
∂
t
f
(
t
)
impar
f
(
t
)
=
−
f
(
−
t
)
∫
−
b
b
f
(
t
)
∂
t
=
0
{\displaystyle {\begin{aligned}&f(t){\text{ par }}f(t)=f(-t){\text{ }}\\&{\text{ }}\int \limits _{-b}^{b}{f(t)\partial t}=2\int \limits _{0}^{b}{f(t)\partial t}\\&f(t){\text{ impar }}f(t)=-f(-t){\text{ }}\\&{\text{ }}\int \limits _{-b}^{b}{f(t)\partial t}=0\\\end{aligned}}}
f(t)
g(t)
f(t)xg(t) o f(t)/g(t)
Par
Par
Par
Impar
Impar
Par
Par
Impar
Impar
f
(
t
)
=
∑
k
=
−
∞
∞
C
k
⋅
e
j
2
π
T
k
t
C
k
=
1
T
∫
−
T
╱
2
T
╱
2
f
(
t
)
⋅
e
−
j
2
π
T
k
t
∂
t
{\displaystyle {\begin{aligned}&f(t)=\sum \limits _{k=-\infty }^{\infty }{C_{k}\cdot e^{j{\frac {2\pi }{T}}kt}}\\&C_{k}={\frac {1}{T}}\int \limits _{{}^{-T}\!\!\diagup \!\!{}_{2}\;}^{{}^{T}\!\!\diagup \!\!{}_{2}\;}{f(t)\cdot e^{-j{\frac {2\pi }{T}}kt}\partial t}\\\end{aligned}}}
Demostración parcial:
{
a
n
b
n
}
=
2
T
∫
−
T
/
2
T
/
2
f
(
t
)
{
cos
(
ω
n
t
)
sin
(
ω
n
t
)
}
∂
t
f
(
t
)
=
a
0
2
+
∑
n
=
1
∞
a
n
⋅
cos
(
ω
n
t
)
⏟
e
j
ω
⋅
n
t
+
e
−
j
ω
⋅
n
t
2
+
∑
n
=
1
∞
b
n
⋅
sin
(
ω
n
t
)
⏟
e
j
ω
⋅
n
t
−
e
−
j
ω
⋅
n
t
2
j
ω
=
2
π
T
f
(
t
)
=
a
0
2
+
∑
n
=
1
∞
e
j
ω
n
t
(
a
n
2
−
j
b
n
2
)
+
e
−
j
ω
n
t
(
a
n
2
+
j
b
n
2
)
a
n
2
±
j
b
n
2
=
1
T
∫
−
T
/
2
T
/
2
f
(
t
)
[
cos
(
ω
n
t
)
±
j
sin
(
ω
n
t
)
]
∂
t
=
1
T
∫
−
T
/
2
T
/
2
f
(
t
)
e
±
j
ω
n
t
∂
t
{\displaystyle {\begin{aligned}&\left\{{\begin{aligned}&a_{n}\\&b_{n}\\\end{aligned}}\right\}={\frac {2}{T}}\int \limits _{{-T}/{2}\;}^{{T}/{2}\;}{f(t)\left\{{\begin{aligned}&\cos \left(\omega nt\right)\\&\sin \left(\omega nt\right)\\\end{aligned}}\right\}}\partial t\\&f(t)={\frac {a_{0}}{2}}+\sum \limits _{n=1}^{\infty }{a_{n}\cdot \underbrace {\cos \left(\omega nt\right)} _{\frac {e^{j\omega \cdot nt}+e^{-j\omega \cdot nt}}{2}}+}\sum \limits _{n=1}^{\infty }{b_{n}\cdot \underbrace {\sin \left(\omega nt\right)} _{\frac {e^{j\omega \cdot nt}-e^{-j\omega \cdot nt}}{2j}}}{\text{ }}\omega {\text{=}}{\frac {2\pi }{T}}\\&f(t)={\frac {a_{0}}{2}}+\sum \limits _{n=1}^{\infty }{e^{j\omega nt}\left({\frac {a_{n}}{2}}-j{\frac {b_{n}}{2}}\right)+}e^{-j\omega nt}\left({\frac {a_{n}}{2}}+j{\frac {b_{n}}{2}}\right)\\&{\frac {a_{n}}{2}}\pm j{\frac {b_{n}}{2}}={\frac {1}{T}}\int \limits _{{-T}/{2}\;}^{{T}/{2}\;}{f(t)\left[\cos \left(\omega nt\right)\pm j\sin \left(\omega nt\right)\right]}\partial t={\frac {1}{T}}\int \limits _{{-T}/{2}\;}^{{T}/{2}\;}{f(t)e^{\pm j\omega nt}}\partial t\\\end{aligned}}}
Ejercicio de ejemplo:(FALTA DIBUJO DE MATHEMATICA)
f
(
t
)
=
{
1
,
−
1
≤
t
≤
0
−
1
,
0
<
t
<
1
,
f
(
t
+
2
)
=
f
(
t
)
,
funcion impar
ω
n
=
2
π
n
T
=
π
n
a
0
=
0
(por ser impar)
a
n
=
2
T
∫
−
T
/
2
T
/
2
f
(
t
)
⏟
impar
cos
(
π
n
t
)
⏟
par
⏟
impar
∂
t
=
0
f
(
t
)
=
∑
n
=
1
∞
b
n
⋅
sin
(
π
n
t
)
b
n
=
2
T
∫
−
T
/
2
T
/
2
f
(
t
)
⏟
impar
sin
(
2
π
n
T
t
)
⏟
impar
⏟
par
∂
t
=
2
⋅
2
T
∫
0
T
/
2
f
(
t
)
sin
(
2
π
n
T
t
)
∂
t
|
T
=
2
=
2
∫
0
1
f
(
t
)
⏟
−
1
sin
(
π
n
t
)
∂
t
=
−
2
∫
0
1
sin
(
π
n
t
)
∂
t
=
−
2
(
−
cos
(
π
n
t
)
π
n
)
|
0
1
=
2
π
n
(
cos
(
π
n
)
⏟
(
−
1
)
n
=
±
1
−
1
)
=
{
0
,
n
=
2
k
,
k
∈
N
−
4
π
n
,
n
=
1
,
3
,
5...
=
2
k
+
1
,
k
∈
N
f
(
t
)
=
∑
n
=
1
∞
(
−
4
π
n
)
⋅
sin
(
π
n
t
)
para n impar
=
∑
k
=
0
∞
(
−
4
π
(
2
k
+
1
)
)
⋅
sin
(
π
(
2
k
+
1
)
t
)
{\displaystyle {\begin{aligned}&f(t)=\left\{{\begin{aligned}&1,{\text{ }}-1\leq t\leq 0\\&-1,{\text{ }}0<t<1\\\end{aligned}}\right.{\text{ }}{\text{, }}f(t+2)=f(t),{\text{ funcion impar}}\\&\omega n={\frac {2\pi n}{T}}=\pi n\\&a_{0}=0{\text{ (por ser impar)}}\\&a_{n}={\frac {2}{T}}\int \limits _{{-T}/{2}\;}^{{T}/{2}\;}{\underbrace {\underbrace {f(t)} _{\text{impar}}\underbrace {\cos \left(\pi nt\right)} _{\text{par}}} _{\text{impar}}}\partial t=0\\&f(t)=\sum \limits _{n=1}^{\infty }{b_{n}\cdot \sin \left(\pi nt\right)}\\&b_{n}={\frac {2}{T}}\int \limits _{{-T}/{2}\;}^{{T}/{2}\;}{\underbrace {\underbrace {f(t)} _{\text{impar}}\underbrace {\sin \left({\frac {2\pi n}{T}}t\right)} _{\text{impar}}} _{\text{par}}}\partial t=2\cdot {\frac {2}{T}}\left.\int \limits _{0}^{{T}/{2}\;}{f(t)\sin \left({\frac {2\pi n}{T}}t\right)}\partial t\right|_{T=2}=2\int \limits _{0}^{1}{\underbrace {f(t)} _{-1}\sin \left(\pi nt\right)}\partial t\\&=-2\int \limits _{0}^{1}{\sin \left(\pi nt\right)}\partial t=-2\left.\left({\frac {-\cos \left(\pi nt\right)}{\pi n}}\right)\right|_{0}^{1}={\frac {2}{\pi n}}\left(\underbrace {\cos(\pi n)} _{\left(-1\right)^{n}=\pm 1}-1\right)=\left\{{\begin{aligned}&0,{\text{ }}n=2k,k\in \mathbb {N} \\&{\frac {-4}{\pi n}},n=1,3,5...=2k+1,k\in \mathbb {N} \\\end{aligned}}\right.\\&f(t)=\sum \limits _{n=1}^{\infty }{\left({\frac {-4}{\pi n}}\right)}\cdot \sin(\pi nt){\text{ para n impar }}=\sum \limits _{k=0}^{\infty }{\left({\frac {-4}{\pi (2k+1)}}\right)}\cdot \sin(\pi (2k+1)t)\\&{\text{ }}\\\end{aligned}}}
E
j
:
cos
(
t
+
1
)
;
T
=
2
π
f
(
t
)
=
∑
n
=
−
∞
∞
C
n
⋅
e
j
2
π
T
n
t
C
n
=
1
T
∫
−
T
╱
2
T
╱
2
f
(
t
)
⋅
e
−
j
2
π
T
n
t
∂
t
ω
⋅
n
=
2
π
T
⋅
n
=
2
π
2
π
⋅
n
=
n
;
f
(
t
)
=
∑
n
=
−
∞
∞
C
n
⋅
e
j
n
t
f
(
t
)
=
cos
(
t
+
1
)
=
e
j
(
t
+
1
)
+
e
−
j
(
t
+
1
)
2
=
1
2
e
j
e
j
t
⏟
n
=
1
+
1
2
e
−
j
e
−
j
t
⏟
n
=
−
1
C
1
=
1
2
e
j
=
τ
−
1
(
τ
n
=
C
n
∗
)
C
−
1
=
1
2
e
−
j
C
n
=
0
,
∀
n
≠
±
1
{\displaystyle {\begin{aligned}&Ej:\cos(t+1);{\text{ }}T=2\pi \\&f(t)=\sum \limits _{n=-\infty }^{\infty }{C_{n}\cdot e^{j{\frac {2\pi }{T}}nt}}\\&C_{n}={\frac {1}{T}}\int \limits _{{}^{-T}\!\!\diagup \!\!{}_{2}\;}^{{}^{T}\!\!\diagup \!\!{}_{2}\;}{f(t)\cdot e^{-j{\frac {2\pi }{T}}nt}\partial t}\\&\omega \cdot n={\frac {2\pi }{T}}\cdot n={\frac {2\pi }{2\pi }}\cdot n=n{\text{; }}f(t)=\sum \limits _{n=-\infty }^{\infty }{C_{n}\cdot e^{jnt}}\\&f(t)=\cos(t+1)={\frac {e^{j(t+1)}+e^{-j(t+1)}}{2}}={\frac {1}{2}}e^{j}\underbrace {e^{jt}} _{n=1}+{\frac {1}{2}}e^{-j}\underbrace {e^{-jt}} _{n=-1}\\&C_{1}={\frac {1}{2}}e^{j}=\tau _{-1}{\text{ (}}\tau _{n}=C_{n}^{*})\\&C_{-1}={\frac {1}{2}}e^{-j}\\&C_{n}=0,\forall n\neq \pm 1\\\end{aligned}}}
(FALTA DIBUJO DE MATHEMATICA)
E
j
:
f
(
t
)
=
{
t
,
−
1
≤
t
≤
1
0
,
|
t
|
>
1
f
(
t
)
=
∑
n
=
−
∞
∞
C
n
⋅
e
j
ω
n
t
ω
=
2
π
T
=
2
=
π
C
n
=
1
T
∫
−
T
╱
2
T
╱
2
f
(
t
)
⋅
e
−
j
2
π
T
n
t
∂
t
=
1
2
⋅
∫
−
1
+
1
t
⋅
e
−
j
π
n
t
∂
t
→
{
u
=
t
∂
u
=
∂
t
∂
v
=
e
−
j
π
n
t
∂
t
v
=
−
1
j
π
n
e
−
j
π
n
t
}
1
2
−
t
j
π
n
e
−
j
π
n
t
|
−
1
1
−
1
2
−
1
j
π
n
∫
−
1
+
1
e
−
j
π
n
t
∂
t
=
1
2
−
t
j
π
n
e
−
j
π
n
t
|
−
1
1
−
1
2
−
1
j
π
n
e
−
j
π
n
t
−
j
π
n
|
−
1
1
=
−
1
2
e
−
j
π
n
⏞
(
−
1
)
n
−
(
−
1
)
⋅
e
+
j
π
n
⏞
(
−
1
)
n
j
π
n
−
1
2
e
−
j
π
n
t
(
j
π
n
)
2
|
−
1
1
=
−
j
(
−
1
)
n
π
n
−
1
2
e
−
j
π
n
−
e
−
j
π
n
⏞
0
(
j
π
n
)
2
=
−
j
(
−
1
)
n
π
n
∀
n
≠
0
C
0
=
1
T
∫
−
T
╱
2
T
╱
2
f
(
t
)
∂
t
=
1
2
∫
−
1
1
t
∂
t
⏟
IMPAR
=
0
f
(
t
)
=
{
∑
n
=
−
∞
∞
−
j
(
−
1
)
n
π
n
⋅
e
j
π
n
t
,
∀
n
≠
0
0
,
n
=
0
{\displaystyle {\begin{aligned}&Ej:\\&f(t)=\left\{{\begin{aligned}&t,-1\leq t\leq 1\\&0,\left|t\right|>1\\\end{aligned}}\right.\\&f(t)=\sum \limits _{n=-\infty }^{\infty }{C_{n}\cdot e^{j\omega nt}}{\text{ }}\omega {\text{=}}{\frac {2\pi }{T=2}}=\pi \\&C_{n}={\frac {1}{T}}\int \limits _{{}^{-T}\!\!\diagup \!\!{}_{2}\;}^{{}^{T}\!\!\diagup \!\!{}_{2}\;}{f(t)\cdot e^{-j{\frac {2\pi }{T}}nt}\partial t=}{\frac {1}{2}}\cdot \int \limits _{-1}^{+1}{t\cdot e^{-j\pi nt}\partial t\to }\\&\left\{{\begin{aligned}&u=t{\text{ }}\partial u=\partial t\\&\partial v=e^{-j\pi nt}\partial t{\text{ }}v={\frac {-1}{j\pi n}}e^{-j\pi nt}\\\end{aligned}}\right\}\\&\left.{\frac {1}{2}}{\frac {-t}{j\pi n}}e^{-j\pi nt}\right|_{-1}^{1}-{\frac {1}{2}}{\frac {-1}{j\pi n}}\int \limits _{-1}^{+1}{e^{-j\pi nt}\partial t=}\left.{\frac {1}{2}}{\frac {-t}{j\pi n}}e^{-j\pi nt}\right|_{-1}^{1}-{\frac {1}{2}}{\frac {-1}{j\pi n}}\left.{\frac {e^{-j\pi nt}}{-j\pi n}}\right|_{-1}^{1}=\\&{\frac {-1}{2}}{\frac {\overbrace {e^{-j\pi n}} ^{\left(-1\right)^{n}}-\left(-1\right)\cdot \overbrace {e^{+j\pi n}} ^{\left(-1\right)^{n}}}{j\pi n}}-{\frac {1}{2}}\left.{\frac {e^{-j\pi nt}}{\left(j\pi n\right)^{2}}}\right|_{-1}^{1}={\frac {-j\left(-1\right)^{n}}{\pi n}}-{\frac {1}{2}}{\frac {\overbrace {e^{-j\pi n}-e^{-j\pi n}} ^{0}}{\left(j\pi n\right)^{2}}}={\frac {-j\left(-1\right)^{n}}{\pi n}}{\text{ }}\forall n\neq 0\\&C_{0}={\frac {1}{T}}\int \limits _{{}^{-T}\!\!\diagup \!\!{}_{2}\;}^{{}^{T}\!\!\diagup \!\!{}_{2}\;}{f(t)\partial t={\frac {1}{2}}\underbrace {\int \limits _{-1}^{1}{t\partial t}} _{\text{IMPAR}}}=0\\&f(t)=\left\{{\begin{aligned}&\sum \limits _{n=-\infty }^{\infty }{{\frac {-j\left(-1\right)^{n}}{\pi n}}\cdot e^{j\pi nt},\forall n\neq 0}\\&0,{\text{ }}n=0\\\end{aligned}}\right.\\\end{aligned}}}
Probemos ahora a poner esta misma función en la forma trigonometrica:
f
(
t
)
=
{
∑
n
=
−
∞
∞
−
j
(
−
1
)
n
π
n
⋅
e
j
π
n
t
,
∀
n
≠
0
0
,
n
=
0
→
−
j
(
−
1
)
n
π
n
=
2
2
⋅
(
−
1
)
n
j
π
n
=
1
2
j
⋅
2
(
−
1
)
n
π
n
→
sin
ω
t
=
e
j
ω
t
−
e
−
j
ω
t
2
j
f
(
t
)
=
1
2
j
−
2
π
e
j
π
t
⏟
n
=
1
+
1
2
j
2
π
e
−
j
π
n
t
⏟
n
=
−
1
+
1
2
j
2
π
2
e
j
π
2
t
⏟
n
=
2
+
1
2
j
⋅
2
π
2
e
−
j
π
2
t
⏟
n
=
−
2
+
1
2
j
−
2
π
3
e
j
π
3
t
⏟
n
=
3
+
1
2
j
2
π
3
e
−
j
π
3
t
⏟
n
=
−
3
+
.
.
.
f
(
t
)
=
−
2
π
sin
(
π
t
)
+
1
π
sin
(
2
π
t
)
+
−
2
π
3
sin
(
3
π
t
)
+
1
2
π
sin
(
4
π
t
)
+
.
.
.
+
∑
n
=
1
∞
2
(
−
1
)
n
π
n
⋅
sin
(
n
π
t
)
{\displaystyle {\begin{aligned}&f(t)=\left\{{\begin{aligned}&\sum \limits _{n=-\infty }^{\infty }{{\frac {-j\left(-1\right)^{n}}{\pi n}}\cdot e^{j\pi nt},\forall n\neq 0}\\&0,{\text{ }}n=0\\\end{aligned}}\right.\to {\frac {-j\left(-1\right)^{n}}{\pi n}}={\frac {2}{2}}\cdot {\frac {\left(-1\right)^{n}}{j\pi n}}={\frac {1}{2j}}\cdot {\frac {2\left(-1\right)^{n}}{\pi n}}\to \sin \omega t={\frac {e^{j\omega t}-e^{-j\omega t}}{2j}}\\&f(t)=\underbrace {{\frac {1}{2j}}{\frac {-2}{\pi }}e^{j\pi t}} _{n=1}+\underbrace {{\frac {1}{2j}}{\frac {2}{\pi }}e^{-j\pi nt}} _{n=-1}+\underbrace {{\frac {1}{2j}}{\frac {2}{\pi 2}}e^{j\pi 2t}} _{n=2}+\underbrace {{\frac {1}{2j}}\cdot {\frac {2}{\pi 2}}e^{-j\pi 2t}} _{n=-2}+\underbrace {{\frac {1}{2j}}{\frac {-2}{\pi 3}}e^{j\pi 3t}} _{n=3}+\underbrace {{\frac {1}{2j}}{\frac {2}{\pi 3}}e^{-j\pi 3t}} _{n=-3}+...\\&f(t)={\frac {-2}{\pi }}\sin \left(\pi t\right)+{\frac {1}{\pi }}\sin \left(2\pi t\right)+{\frac {-2}{\pi 3}}\sin \left(3\pi t\right)+{\frac {1}{2\pi }}\sin \left(4\pi t\right)+...+\sum \limits _{n=1}^{\infty }{\frac {2\left(-1\right)^{n}}{\pi n}}\cdot \sin(n\pi t)\\\end{aligned}}}
Como reglas generales para saber si hemos hecho bien la serie de Fourier, tenemos:
En la forma trigonometrica (sumas de senoides) todos los coeficientes deben ser números reales (no puede haber j), ya que, como es lógico, nuestra función a representar es real
Si los coeficientes de mismo valor pero signo opuestos (+-1,+-2,etc..) no son iguales o complejos conjugados es que hemos hecho algo mal
Para este ejercicio en concreto al ser la función impar, el sumatorio estará compuesto por funciones impares, esto es, sin().