Diferencia entre revisiones de «Física Biológica PCLF/Nociones de estructura química de enlaces/ORBITALES HIBRIDOS SP3 DEL ÁTOMO DE CARBONO»

Contenido eliminado Contenido añadido
m Bot: Arreglos menores de formato y miscelánea
EduLeo (discusión | contribs.)
Línea 3:
El Carbono es un elemento crucial para la existencia de los organismos vivos. Su número atómico es 6 y pertenece al grupo 14 del sistema periódico.
 
El carbono tiene la capacidad única de enlazarse con otros átomos de carbono para formar compuestos en cadena muy complejos. Debido a lo anterior, el carbono puede formar una cantidad infinita de compuestos, siendo los más comunes las combinaciones carbono-hidrogenohidrógeno.
 
A continuación se estudiará con detalle la función de onda que describe al carbono en un estado llamado hibridación <math>SP^3</math>.
 
Muchos enlaces químicos reales se forman a partir de funciones de onda que son combinaciones lineales de orbitales <math>P</math> y <math>S</math> . Este fenómeno se llama hibridación, y da lugar a funciones de onda de geometría diferente. Por ejemplo, el carbono, cuyo estado fundamental tiene la configuración <math>1S^2,2S^2,2P^2</math>, puede formar hasta cuatro enlaces covalentes, pues a partir de la única función de onda <math>2S</math> y las tres funciones <math>2P_x,2P_y</math> y <math>2P_z</math> se forman cuatro combinaciones lineales independientes (orbitales híbridos SP^3) cada uno de los cuales está ocupado por uno de los cuatro electrones externos (Fig. 1). En el carbono, esta hibridación da lugar a cuatro enlaces dirigidos hacia los vértices de un tetraedro regular. El ángulo entre dos cualesquiera de esos enlaces es de 109.5˚. Esta circunstancia es la que da lugar a la estructura cristalina del diamante. La hibridación <math>SP^3</math> no es la única posible en el carbono, aunque es la más usual.
 
 
De lo dicho se desprende que cuando un átomo forma más de un enlace covalente, estos enlaces forman entre sí ángulos bien definidos. Por lo tanto los enlaces covalentes son dirigidos, además de saturables. Estas propiedades son fundamentales porque determinan la geometría de las moléculas y el tipo de estructura cristalina del compuesto.
Línea 16 ⟶ 15:
La hibridación <math>SP^3</math> provee una ventaja energética, pues la superposición en forma tetraédrica es bastante favorable energéticamente para compensar la energía necesaria para promover el electrón del orbital <math>2S</math> al orbital <math>2P</math>. Esto se debe básicamente a que la energía entre el orbital <math>2S</math> y <math>2P</math> es muy pequeña, es decir, <math>\Delta E = |2S - 2P|\pi\varepsilon </math> donde <math>\varepsilon</math> es una cantidad de energía muy pequeña comparada con las energías de <math>2S</math> y <math>2P</math>.
 
Como se mencionomencionó anteriormente, la función de onda que describe al átomo de carbono híbrido debe ser la combinación lineal de las funciones de onda de cada uno de los orbitales de la hibridación, es decir:
 
<math>\psi_i = \sum_j a_{ij}\phi_j</math>
Línea 22 ⟶ 21:
Donde <math>\phi_j</math> son las funciones de onda de átomos hidrogenoides de orbitales <math>2S, 2P_x,2P_y</math> y <math>2P_z</math>.
 
En coordenadas esféricas, cada una de las funciones de onda correspondientes a los orbitales <math>2S, 2P_x,2P_y, 2P_z</math> se puede dar como sigue:
 
<math>\phi_1(2S) = Ce-^\rho(1-\rho)</math>
Línea 30 ⟶ 29:
 
Donde <math>\rho = \frac{zr}{a_0}</math> con <math>a_0</math> como el radio de Bohr y z la carga nuclear del carbón.A continuación se muestran las gráficas de <math>\phi_1 \phi_2 y \phi_3</math> y <math>\phi_4</math> :
 
 
Las anteriores representaciones gráficas de las funciones de onda se han realizado con la salvedad de que <math>\rho = cte</math>.
 
Al graficar la superposición de las funciones de onda de cada uno de los orbitales, se obtiene la forma tetraédrica del carbono hibrido.
 
 
Como se muestra en la figura anterior, cada uno de los cuatro orbitales híbridos resultantes pueden crear enlaces covalentes sencillos con otro átomo, quedando de esta manera dilucidado el porque de la tetravalencia del átomo de carbono.
Línea 46 ⟶ 43:
 
A continuación se muestran las gráficas de las densidades de probabilidad de cada uno de los orbitales del carbono ( <math>S</math> y <math>d</math> ):
 
 
Del análisis pertinente de las anteriores gráficas se concluye que en el carbono es mucho más probable encontrar sus electrones en un radio superior al radio de Bohr (línea punteada).