Diferencia entre revisiones de «Mecánica»

153 bytes eliminados ,  hace 11 años
Correcciones ortográficas y otras
m (Prueba bot: Enlaces al espacio de nombres principal (ya no estamos en Wikilibros))
(Correcciones ortográficas y otras)
<span style="font-size:80%">Este curso pertenece al [[Departamento de Física]].</span>
Asignatura de '''Mecánica'''
 
== Temario: ==
Estudios de [[Estudios:Ciencias Físicas|Ciencias Físicas]]
 
* Cinemática
[[Facultad de ciencias|Facultad de Ciencias]]
:** MRU
:** MRUA
:** MAS
:** MCU
* Dinámica
:** Masa inercial
:** Momento
:** Fuerza
:** Momento de una fuerza y momento de inercia
* Colisiones
:** Energía
 
== Cinemática ==
Temario:
*Cinemática
:MRU
:MRUA
:MAS
:MCU
*Dinámica
:Masa inercial
:Momento
:Fuerza
:Momento de una fuerza y momento de inercia
*Colisiones
:Energía
 
La '''Cinemática''' (del griego ''kinos':', movimiento) es la parte de la '''Mecánica''' que se encarga de estudiar el movimiento, independientemente de las causas que lo generan.
=Cinemática=
 
La '''Cinemática''' (del griego 'kinos': movimiento) es la parte de la '''Mecánica''' que se encarga de estudiar el movimiento, independientemente de las causas que lo generan.
 
Para ello, lo primero es tener claras unas cuantas definiciones.
En ocasiones, al módulo de la velocidad se le llama '''celeridad''' o '''rapidez''': <math>c=|\vec v|=\sqrt{v_x^2+v_y^2+v_z^2}</math>.
 
=== Movimiento Rectilíneo y Uniforme (M.R.U.) ===
 
Cuando el vector velocidad, que acabamos de definir, es constante con respecto al tiempo, es decir, es constante en dirección y sentido, tenemos el tipo de movimiento que llamamos '''Movimiento Rectilíneo y Uniforme'''. Rectilíneo, porque la velocidad no varía en dirección, y uniforme, porque no varía en módulo.
 
En general, la posición <math>\vec r</math> es la integral de la velocidad:
<math>r_0=0\ \Rightarrow\ r(t)=v\,t\ \Rightarrow\ r(t)=s(t)</math>
 
=== Movimiento Rectilíneo Uniformemente Acelerado (M.R.U.A.) ===
 
Si el vector velocidad varía, ya no estamos ante un M.R.U., sino ante un movimiento aceleradoM.R.U.A.. El nombre proviene de una nueva magnitud, que mide, precisamente, la variación de la velocidad con respecto al tiempo: la '''aceleraciónAceleración''':
 
<math>\vec a=\frac{\mathrm{d}\vec v}{\mathrm{d}t}</math>
 
Esta variación de la velocidad puede ser tanto de módulo como de dirección, al ser ésta vectorial. Si la aceleración es constante en dirección y sentido, y es paralela a la velocidad, ésta variará únicamente de módulo (y, en su caso, de sentido), pero no de dirección. En ese caso, hablamos de '''Movimiento Rectilíneo Uniformemente Acelerado'''.
 
Como la aceleración es la derivada segunda de la posición:
<math>\vec a=\frac{\mathrm{d}^2\vec r}{\mathrm{d}t^2}=\frac{\mathrm{d}}{\mathrm{d}t}\!\left(\frac{\mathrm{d}\vec r}{\mathrm{d}t}\right)</math>
 
Des esta forma, podemos hallar la posición como la integral segunda de la aceleración, que en este caso es constante:
 
<math>\vec a=\mathrm{cte.}\ \Rightarrow\ \vec r=\!\int\!\!\!\int\!\vec a\,\mathrm{d}t^2=\frac{1}{2}\vec a\,t^2+\vec{v_0}\,t+\vec{r_0}</math>
Además, operando con las ecuaciones anteriores podemos obtener otras como:
 
<math>\left(v+v_0\right)t=2\left(r-r_0\right)</math> (útil si la aceleración no es ni dato ni incógnita) [[Asignatura:Mecánica:Desarrollo 1|<nowiki>[Ver desarrollo]</nowiki>]]
 
<math>2\,a\left(r-r_0\right)=v^2-{v_0}^2</math> (útil si el tiempo no es ni dato ni incógnita) [[Asignatura:Mecánica:Desarrollo 1|<nowiki>[Ver desarrollo]</nowiki>]]
1717

ediciones