Diferencia entre revisiones de «Ondas Longitudinales: Sonido»

Correción en signos de puntuación y redacción.
(Correción en signos de puntuación y redacción.)
 
La cual expresa la cantidad de presión en la que la presión en la onda difiere de la presión atmosférica y donde <math>B</math> es el módulo volumétrico.
 
Como podemos ver, las funciones que describen la presión y el desplazamiento, están desfasadas un cuatro de ciclo. Cuando el desplazamiento es máximo, la fluctuación de presión es cero y viceversa.
 
Observe también que los puntos de compresión (puntos de máxima presión y densidad) y las expansiones (puntos de mínima presión y densidad) son puntos de desplazamiento cero.
 
En los puntos de compresión las partículas  se agolpan por lo que la densidad aumenta y en los puntos de expansión las partículas se separan, por lo que la densidad disminuye.
 
== Velocidad de la onda sonora: dependencia con la temperatura ==
<math>v=331\sqrt{1+ {T_c \over 273}}</math>
 
donde 331 es la rapidez del sonido en el aire a 0°C y   <math>T_c</math>  es la temperatura en grados Celsius.
 
== Onda sonora tridimensional, onda sonora bidimensional ==
Las ondas tridimensionales se propagan en las tres direcciones, también se conocen como ondas esféricas, ya que sus frentes de onda son esferas concéntricas que salen de la misma fuente de perturbación, expandiéndose en todas las direcciones, por ejemplo, el sonido y la luz.
[[File:Onda tridimensional 1.jpg|thumb|Ejemplo de onda sonora tridimensional|centro|140x140px]]
Las ondas bidimensionales se propagan en dos direcciones, pueden propagarse en cualquiera de las direcciones de un a superficie, por lo que también son conocidas como ondas superficiales, por ejemplo, la onda que se produce cuando se deja caer una piedra en un tanque de agua.
[[File:Onda bidimensional 1.jpg|thumb|Ejemplo de onda sonora bidimensional|centro|140x140px]]
 
[[File:Tubo semicerrado.jpg|thumb|Armónicos para un tubo semicerrado|centro|400x400px]]
 
En un tubo abierto en ambos extremos, las frecuencias normales son múltiplos enteros de la frecuencia fundamental.
 
<math>f_n=n{v \over 2L}</math>
 
En un tubo cerrado en un extremo, las frecuencias normales son múltiplos enteros impares de lasla frecuencia fundamental.
 
<math>f_n=(2n-1){v \over 2L}</math>
El principio de superposición en ondas sonoras se adecúa al estudiado en cuerdas, ondas que viajan en diferentes sentidos con la misma frecuencia, un ejemplo claro son las ondas estacionarias en tubos de aire.
 
Ahora consideraremos otro tipo de interferencia, una en donde lalas frecuencias de las ondas difieredifieren una de la otra, en este caso las ondas estarán fuera de fase, es decir hay alternación temporal.
 
Lo anterior hace que exista interferencia constructiva y destructiva. A este fenómeno se le conoce como interferencia temporal. La frecuencia resultante es la diferencia de frecuencias entre las dos ondas que se sobreponen.
 
Aquellos puntos en los que las ondas se encuentran en fase entre ellas, son puntos máximos, es decir, hay interferencia constructiva,. aquellosAquellos en los que se observa un desfase de 90°, son mínimos, es decir, interferencia destructiva.
 
== Efecto Doppler ==
74

ediciones