Diferencia entre revisiones de «Matemática II(UNI)»

868 bytes añadidos ,  hace 6 años
+.
(+.)
(+.)
 
==== Ejercicios ====
[[File:Ángulos opuestos y contiguos.svg|190px150px|center]]
{|
| valign="top" |1.
| colspan="2" |Dado cualquier par de ángulos de un triángulo se tiene el tercero(propiedad angular 1), aunque es conocido como ALA.
 
{| align=center |
{|
|[[File:Postulado ALA 0.svg|200px150px]]
|[[File:Postulado ALA 1.svg|200px150px]]
|}
 
| colspan="2" | Se construye el ángulo con dichos lados, luego aplico el <math>2^{do}</math> axioma dice que por los extremos no comunes de los lados solo pasa una única recta que es lo que se buscaba.
 
[[File:Postulado LAL 0.svg|200px150px|center]]
 
Es conocido como LAL.
|-
| valign="top" |5.
| EnDado un triángulo, se tiene queentonces:
{| class="mw-collapsible wikitable {{#ifeq: {{{plegada|sí}}}|no||mw-collapsed|}}" width="100%" style="text-align:left; background-color:#fff;"
| align="left" | HayTiene dos lados iguales si y solo si haytiene dos ángulos iguales.
| align="right" width="170" | '''Demostración:'''&nbsp;
|-
| colspan="2" | Supongamos que tenemos un triángulo, <math>\Delta ABC</math>, con dos lados iguales, AB=BC, lo único que tenemos que hacer es cosntruir el mismo triángulo sobre sí mismo con el vértice B coincidente y los lados iguales intercambiados, en consecuencia, los extremos no comunes, A y veremosC, rápidamentecoinciden con su copia por ser éstos de la misma longitud, por el <math>2^{do}</math> axioma, el segmento que determinan es único.. Directamente aplicamos la propiedad 4 y se obtiene que <math>\angle BAC = \angle BCA</math>. Diremos por tanto que a lados iguales se oponen ángulos iguales.
 
Supongamos ahora que tenemos un triángulo, <math>\Delta ABC</math>, con dos ángulos iguales, <math>\angle BAC = \angle BCA</math>, sabemos que para cualquier lado AC el vértice B queda determinado de forma única por la propiedad 3, como antes, podemos construir una copia sobre sí mismo de tal modo que B coincida y los lados AB y BC intercambiados coincidan. Directamente veremos que AB=BC. Diremos por tanto que a ángulos iguales se oponen lados iguales.
|}
|}
Usuario anónimo